Kurzcharakteristik - Phasenvibrato

Das Gerät dient zur Erzeugung einer Phasenmodulation. Durch seine stufenlose Regelung von Modulationsfrequenz und Rückkopplung sind eine Vielzahl von Effekten möglich, z.B. Kathedralsound, Phasing-, Rotoreffekt u.a.

Mit dem Regler für die Eingangsempfindlichkeit kann der "Phaser 80" an die Ausgangsspannung des jeweiligen Instrumentes angepaßt werden, wodurch ein optimaler Störabstand
erreicht wird. Die Phasenmodulation des NF-Signals erfolgt in einem gesteuerten analogen
Eimerkettenspeicher, der aus 186 integrierten Feldeffekttransistoren besteht. Ein besonderer Vorteil des "Phaser 80" ist die äußerst geringe Baßbeeinflußung bei gleichzeitiger
kräftiger Modulation in den mittleren und hohen Lagen. Störgeräusche bei Ein- und Ausschalten des Gerätes werden durch eine zusätzliche Schaltung unterdrückt.

Funktionsbeschreibung

Wirkungsweise des Gerätes

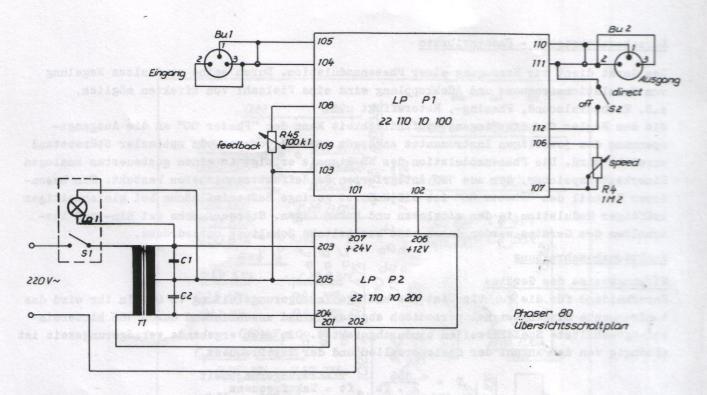
Entscheidend für die Funktion ist die analoge Verzögerungsleitung VL 01. In ihr wird das tonfrequente Eingangssignal periodisch abgetastet und anschließend durch 186 hinterein-andergeschaltete Speicherzellen hindurchgetaktet. Die sich ergebende Verzögerungszeit ist abhängig von der Anzahl der Speicherzellen und der Taktfrequenz.

$$T = \frac{186}{2 \cdot ft}$$
 $T = Verzögerungszeit$

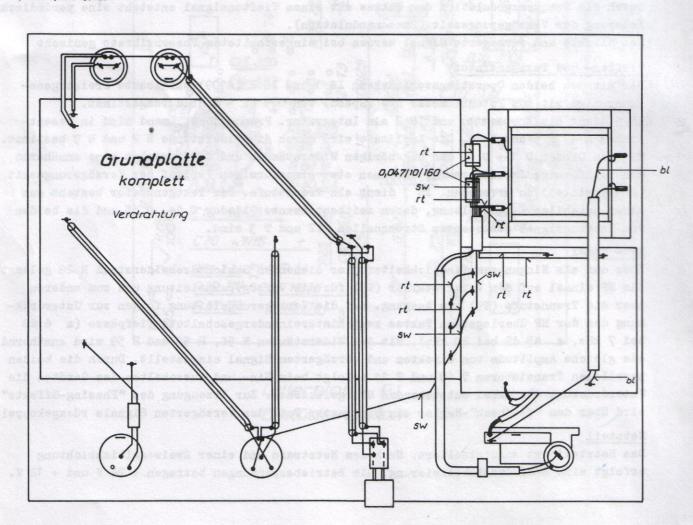
Durch die Frequenzmodulation des Taktes mit einem Tieftonsignal entsteht eine periodische Änderung der Verzögerungszeit (Phasenmodulation).

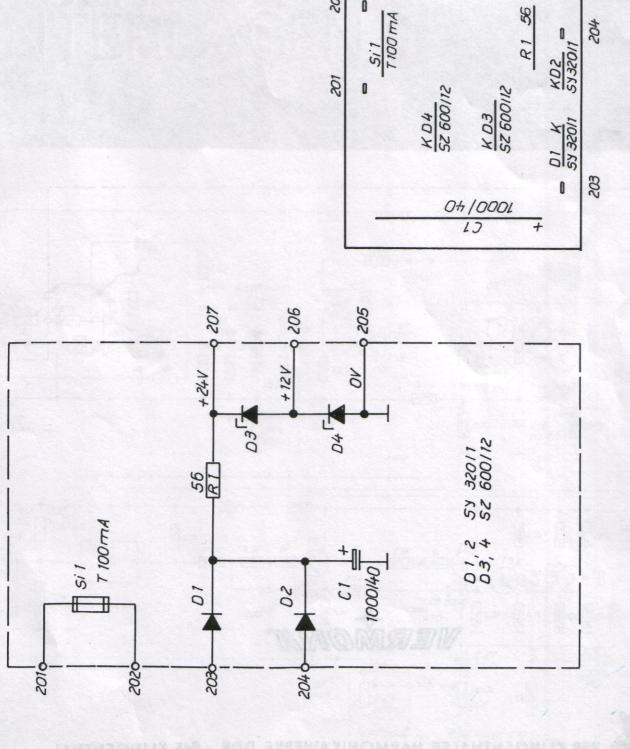
Das direkte und verzögerte Signal werden bei eingeschaltetem Phasenvibrato gemischt

Tiefton- und Taktgenerator


Der mit den beiden Operationsverstärkern IS 1 uns IS 2 (A109) aufgebaute Dreieckgenerator wird mit dem Potentiometer R 4 (Speed) von 0,5 Hz - 8 Hz durchgestimmt. IS 1 dient als Komparator und IS 2 als Integrator. Frequenzbestimmend sind im wesentlichen R 4, R 5 und C 10. Die Amplitude wird durch die Widerstände R 2 und R 9 bestimmt. Mit den Dioden D 1 - D 4, den zugehörigen Widerständen und C 11 erfolgt eine annähernd kosekandförmige Impulsformung, um einen etwa sinusförmigen Verlauf der Verzögerungszeit (Phasenwinkel) zu erreichen. IS 3 dient als Trennstufe. Der Taktgenerator besteht aus einer astabilen Kippschaltung, deren zeitbestimmente Glieder C 14, C 15 und die beiden vom Tieftonsignal gesteuerten Stromquellen T 2 und T 3 sind.

NF - Kanal


Über den als Eingangsempfindlichkeitsregler dienenden Schichtdrehwiderstand R 26 gelangt die NF einmal auf den Vorverstärker (T5) für die Verzögerungsleitung und zum anderen über die Trennstufe (T9) zum Ausgang. Auf die Verzögerungsleitung folgen zur Unterdrükkung des der NF überlagerten Taktes zwei hintereinandergeschaltete Tiefpässe (a 6 dB bei 7 kHz, a 45 dB bei 20 kHz). Mit den Widerständen R 56, R 57 und R 59 wird annähernd die gleiche Amplitude von direktem und verzögertem Signal eingestellt. Durch die beiden parallelen Transistoren T 10 und T 11 erfolgt beim Ein- und Ausschalten des Gerätes die Unterdrückung des dabei entstehenden Störgeräusches. Zur Erzeugung des "Phasing-Effekts" wird über den "feedback"-Regler ein begrenzter Teil des verzögerten Signals rückgekoppelt.

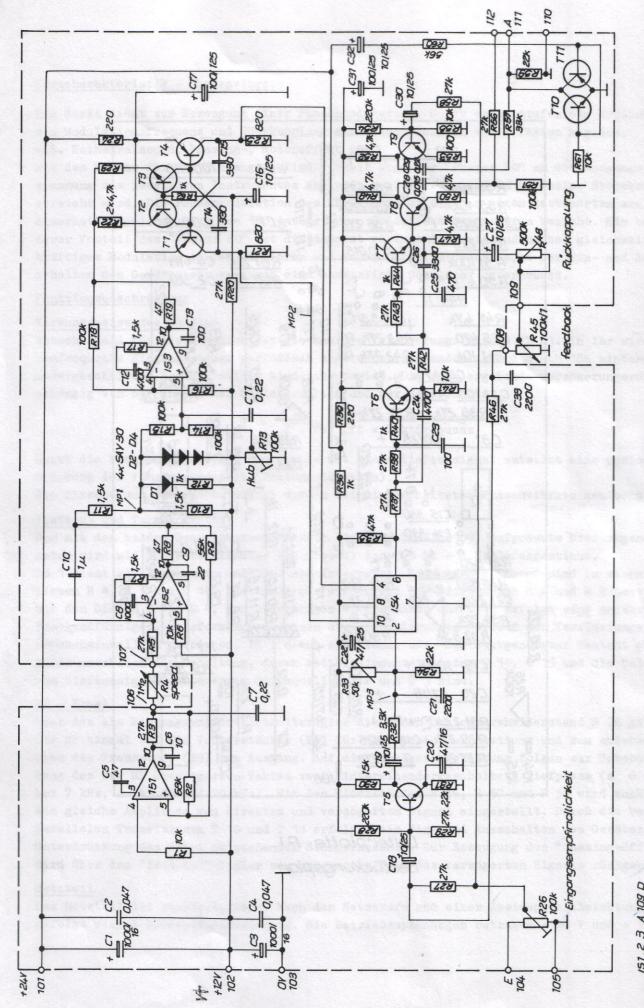

Netzteil

Das Netzteil ist schutzisoliert. Nach dem Netztrafo und einer Zweiweggleichrichtung erfolgt eine Z-Diodenstabilisierung. Die Betriebsspannungen betragen + 24 V und + 12 V.

C1, C2 0,047/10/160

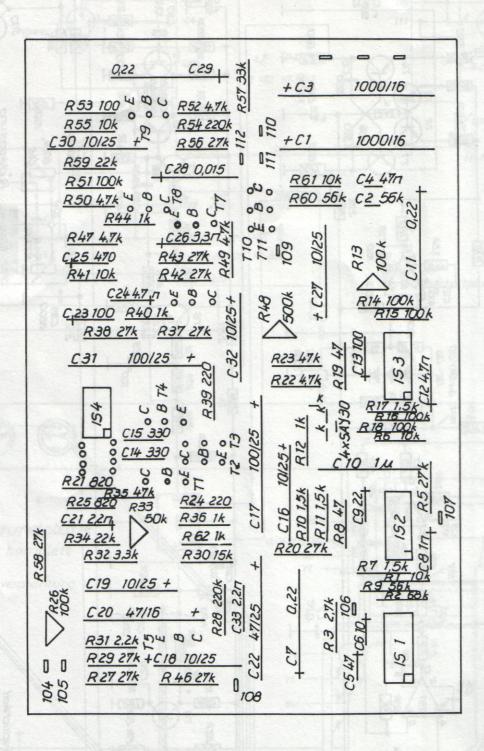
202

Leiterplatte P2 Bestückungsplan


K≥ Katode

402

206


205

Stromloufplan . Leiterplatte P2

Leiterplatte P1 Stromlaufplan

151, 2, 3, 4, 109 D 154, 74, 01 77, 74, 771 BC 177 72, 73, 7, 10, 55, 200 75 - 79 5C 239 d

Leiterplatte P1 Bestückungsplan